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On the motion of mechanical networks
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Abstract. This paper develops the differential equations governing the motion of spatial networks to which
mechanical features such as masses, stiffness coefficients, tensions and bending moments have been associated.
These networks generalize the concept of particle systems introduced for the simulation of flexible bodies and
extend their application to elastic models. The network deformation is shown to be related to the internal ten-
sions and moments by a set of vectors, the directors of the network. A numerical example describing a rotating
flexible beam is presented.
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1. Introduction

The main theories of rational mechanics are based on the concept of a continuous distribu-
tion of matter, which is called the continuum. This concept has been used extensively as an
idealization to describe such objects as rigid bodies, deformable bodies and fluids. However, it
has long been known that quite different (i.e., discrete) approaches could be applied to obtain
useful insights into the behavior of mechanical systems.

In the past years, access to increasingly high-performance computers has resulted in a
strong incentive to revisit the fundamentals of this line of reasoning. The general-purpose
numerical schemes such as finite-difference or finite-element methods are formulated directly
from the partial differential equations (or their variational counterparts) governing the behav-
ior of a continuum. On the other hand, the complexity of fluid motion, induced by a wide
distribution of spatial scales needed to describe adequately the vorticity field, has led to a
radically different point of view. Instead of trying to discretize a system of partial differen-
tial equations, we closely study a large number of individual particles of which each one is
interacting potentially with all the others according to a given set of collision laws. First seen
in the sixties, these methods were known as the Marker-And-Cell (MAC) or Particle-In-Cell
(PIC) methods. They matured during the eighties into what is now known as the lattice-gas
computational methods for fluid flows [1].

In the field of solid mechanics, this approach has been used mainly for computer anima-
tions in order to simulate the motion of flexible systems such as draperies or garments. A
large number of particles are connected in a mesh, each particle interacting with its neigh-
bors by the mean of internal forces [2]. The mechanical principles used in the setup of such
models are usually crude or sometimes replaced by heuristics to speed up the computations
[3]. In three-dimensional meshes, the internal forces are usually assumed to be exerted along
the line joining the two interacting particles.

The purpose of this paper is to establish the differential equations describing the elas-
tic motion of particle systems whereby the strain energy depends not only on the relative
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distances between individual particles but also on the relative orientation between the edges
connecting the mass points. In order to do so, the network is endowed with a small set of
“physical” constants, and a small number of variables are defined in order to mimic the main
features of an elastic state. These quantities are then bound to interact according to some
local behavior laws as if they were true mechanical quantities (lengths, forces, moments . . . ).
From this process follow the global laws governing the evolution of the state variables asso-
ciated with this mechanical network.

The structure of this paper is as follows: Section 2 introduces the notations and estab-
lishes some useful identities. The components of the network mechanical state vector (posi-
tions, velocities, tensions and bending moments) are defined in Section 3, and their laws of
evolution are derived in Section 4, leading to the main differential system (42–45). A numeri-
cal example will be presented in Section 5 in order to illustrate how these concepts do extend
the domain of applicability of particle systems to model elastic bodies.

2. Notations

A geometrical definition of the networks in motion will be presented first (see Figure 1).
Let us denote by N = {Pi(t)} a set of nn moving points of IR3 (t denotes the time). These
points are called the nodes of the network. Their positions and velocities are respectively given
by Xi (t) and Vi (t). A node is connected to its neighbors by a set of edges, defined as a
couple (Pi,Pj ) of nodes. The set of edges E is a subset of the Cartesian product N × N .
The whole topological network G is given by the couple (N ,E), with nn = Card(N ) and
ne=Card(E).

To the edge p is assigned a couple of integers [B(p),E(p)], with B(p) < E(p). The first
integer B(p) is the index of the first vertex (node) of the edge (Begin of p), and E(p) is the
index of the second vertex (End of p). Let us denote by Sp the unit vector on the edge p, ori-
ented from B(p) toward E(p). Following Ericksen and Truesdell [4], these unit vectors will be
called the primary directors for the network G.

To the node Pi are associated the sets Ie+(i), Ie−(i), Ie(i) and IeS(i) defined by the
relations:

p ∈ Ie−(i)⇔ i =B(p), (1)

p ∈ Ie+(i)⇔ i =E(p), (2)

Ie(i)= Ie−(i)∪ Ie+(i), (3)

IeS(i)={ (p, q) p ∈ Ie(i) q ∈ Ie(i) p >q }. (4)

Figure 1. A mechanical network of mass points.



On the motion of mechanical networks 305

Let there be a node i and an edge p ∈ Ie(i). We introduce the following notations:

�p =‖XE(p) −XB(p)‖, (5)

a
p
i =

{
E(p) if p ∈ Ie−(i),

B(p) if p ∈ Ie+(i)

s
p
i =

{+1 if p ∈ Ie+(i),

−1 if p ∈ Ie−(i)

Vp =VE(p) −VB(p). (6)

Let us remark that, letting s
p
i =0 for p �∈ Ie(i), the length �p of an edge p, its primary director

Sp and its relative velocity Vp could as well be defined by the relations (with i =B(p) and
j =E(p))

�p =
∥∥∥∑

k

s
p
k Xk

∥∥∥=
∥∥∥sp

i Xi + s
p
j Xj

∥∥∥,

Sp =
(∑

k

s
p
k Xk

)/
�p =

s
p
i Xi + s

p
j Xj

�p

,

Vp =
∑

k

s
p
k Vk = s

p
i Vi + s

p
j Vj .

A couple of edges (p, q) sharing a vertex i is called an elbow of the node Pi , and will be
denoted by the symbol [i; (p, q)], with p >q.

Let us consider an elbow [i; (p, q)]. In the case where Sp ∧ Sq �= 0 (i.e., when Sp and Sq

are not collinear), the secondary director Bpq is defined as

Bpq = s
p
i s

q
i

Sp ∧Sq

‖Sp ∧Sq

∥∥ . (7)

In the case Sp ∧ Sq = 0, the director Bpq will be a unit vector normal to these two pri-
mary directors and will be defined by some other condition. The directors (Sp,Sq) repre-
sent for the network the discrete equivalent of the unitary tangent vector t to the “curve”
(i, s

q
i Sq,−s

p
i Sp), as Bpq represents the discrete binormal b for this same curve.

Given two unit vectors Sp and Sq , we denote by Spq the matrix computed by

Spq =Sp·Sq I −Sp St
q . (8)

Using these notations, we may obtain the temporal derivative of a primary director from
the kinetics of the edge extremities by the relation:

Ṡp = 1
�p

Spp Vp. (9)

Proof. The vector Sp is equal to

Sp = 1
�p

(
XE(p) −XB(p)

)
.

Let i =B(p) and j =E(p) (i <j ). Then,

Ṡp = 1
�p

(
Vj −Vi

)− �̇p

�2
p

(
Xj −Xi

)= 1
�p

Vp − �̇p

�p

Sp.
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Let us then compute �̇p by deriving with regard to time the two sides of the identity

�2
p = (Xj −Xi

) · (Xj −Xi

)
,

2 �p�̇p =2
(
Xj −Xi

) · (Vj −Vi

)
,

�̇p =Sp· (Vj −Vi

)=Sp·Vp. (10)

As a consequence,

Ṡp = 1
�p

(
Vp −Sp ·Vp Sp

)= 1
�p

(
Vp −Sp St

p Vp
)

= 1
�p

(
I −SpSt

p

)
Vp = 1

�p

Spp Vp.

We shall need later the following three relations, in which Sp and Sq are two unit vectors:

SppSq =Sq −Sp ·Sq Sp. (11)

Proof. As Spp = I −SpSt
p, we can write

SppSq =Sq −SpSt
pSq =Sq −Sp

(
St

pSq

)
=Sq −Sp ·Sq Sp.

For any vector M,

SppM ·Sq =SppSq ·M. (12)

Proof.

SppM ·Sq =
(

M −SpSt
pM

)
·Sq =Sq ·M −St

q

(
SpSt

pM
)

=Sq ·M − (Sp ·Sq

) (
St

pM
)

=Sq ·M − (Sp ·Sq

) (
Sp ·M

)
= [Sq − (Sp ·Sq

)
Sp

] ·M

=SppSq ·M (using (11)).

Finally,

Spp
(
Sp ∧M

)=Sp ∧M. (13)

Proof. By definition, Spp = I −SpSt
p, so that

Spp
(
Sp ∧M

)=Sp ∧M −Sp

[
Sp· (Sp ∧M

)]
=Sp ∧M,

as, evidently, A·(A ∧B)=0.
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3. Mechanical networks

So far, the description of the network has been purely geometrical. To give this network a
mechanical behavior, we associate with each node Pi a positive number mi (its mass), with
each edge p a positive number Kp (the tensional rigidity), and with each elbow [i, (p, q)] a
positive number Ji;(p,q) (the flexural rigidity).

Let us then consider a node Pi as a particle of mass mi subjected to the action of con-
current forces Fk

i . Some of these forces are due to causes external to the network, such as a
gravity field or a fluid pressure. The resultant of all these external forces acting on the node
Pi is denoted by Fe

i (t). The other forces, transmitted to Pi by the edges concurring on this
node, may be divided into three sets.

Firstly, we find the tensions acting along the edges and resulting from the relative dis-
placements of the two vertices of a same edge. The tension in the edge p will be denoted by
Tp (this number is positive for a traction, negative for a compression) and the corresponding
force is given by Tp Sp.

Secondly, there are the bending moments acting on the elbows [i; (p, q)], resulting from
a closure or an opening of the angle made by the two edges p and q having i as a com-
mon vertex. For (p, q)∈ IeS(i), we denote by Mi;(p,q) the vector associated with this bending
moment. We refer to these moments as the local bending moments relative to node Pi .

Lastly, we must take into account the actions of the bending moments relative to the
nodes Pj linked to the node Pi by an edge p. Such moments, denoted by Mj ;(p,q), with
p ∈ Ie(i) or q ∈ Ie(i), are called the neighboring bending moments of node Pi .

Only masspoints and massless rectilinear links have been introduced to describe this net-
work, without any local inertia tensor. As a consequence, the motion of the nodes will obey
the dynamical equations obtained by considering the balance of forces applied to each node
Pi :

Ẋi =Vi mi V̇i =
∑

k

Fk
i +Fe

i . (14)

A detailed description of the internal forces Fk
i will be presented below.

3.1. Tensions

The indexes of the edges directed toward or outwards the node Pi are listed in the set Ie(i).
A tension force applied on a node Pi by an edge p ∈ Ie(i) may be written as (Figure 2):

Fp
i =

{+Tp Sp if p ∈ Ie−(i)

−Tp Sp if p ∈ Ie+(i)
�⇒Fp

i =− s
p
i Tp Sp for all p ∈ Ie(i).

Thus, the node Pi will be subjected to the following tension forces:∑
tensions

Fk
i =−

∑
p∈Ie(i)

s
p
i Tp Sp. (15)

3.2. Local bending moments

The set IeS(i) contains the couple of edges (p, q) sharing Pi as a common node. The angular
displacement of the elbow [i; (p, q)] results in a vectorial bending moment Mi;(p,q), normal to
the plane (Sp,Sq). This bending moment will subject the nodes Pj and Pk to the forces F i

j

and F i
k , with j =a

p
i and k =a

q
i .
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Figure 2. Primary directors and tensions.

The usual convention will be employed to define the orientation of the vectorial bend-
ing moment: when the effect of this moment is to open the angle (p, q), the set of vectors[{i → j}, {i →k},Mi;(p,q)

]
is right-handed. This moment may be then defined by

Mi;(p,q) =Mi;(p,q)

Si→j ∧Si→k

‖Si→j ∧Si→k‖ . (16)

The forces created by Mi;(p,q) on the nodes Pj and Pk can be given as

Fi
j =+ 1

�p

Si→j ∧Mi;(p,q), Fi
k =− 1

�q

Si→k ∧Mi;(p,q) (17)

with Si→j =−s
p
i Sp and Si→k =−s

q
i Sq . Thus,

Mi;(p,q) = s
p
i s

q
i

Sp ∧Sq

‖Sp ∧Sq‖Mi;(p,q) =Bpq Mi;(p,q) (18)

and

Fi
j =−s

p
i

1
�p

Sp ∧Mi;(p,q), Fi
k =+s

q
i

1
�q

Sq ∧Mi;(p,q). (19)

As a consequence,

Fi
j =− s

p
i

�p

Sp ∧Bpq Mi;(p,q), Fi
k =+ s

q
i

�q

Sq ∧Bpq Mi;(p,q).

These quantities are sketched in Figure 3. By Newton’s third law, the node Pi will be sub-
jected to forces equal and opposite to the forces applied on Pj and Pk by the bending
moment acting from Pi . The resultant of these two forces, applied on Pi , is then

Fj,k
i =−

[
Fi

j +Fi
k

]
=
(

s
p
i

�p

Sp − s
q
i

�q

Sq

)
∧Bpq Mi;(p,q). (20)

Figure 3. Local bending moments.
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Let us introduce the third family of directors Npq by the relation

Npq = s
p
i Sp ∧Bpq (21)

and let us remark that (since Bqp =−Bpq )

Nqp = s
q
i Sq ∧Bqp =−s

q
i Sq ∧Bpq.

Then, we may rearrange (20) to get

Fj,k
i =

(
1
�p

Npq + 1
�q

Nqp

)
Mi;(p,q). (22)

The resultant of the forces applied on the node Pi by the local bending moments associ-
ated to the elbows [i; (p, q)] may be expressed as

∑
loc

Floc
i =

∑
(p,q)∈IeS

(i)

(
1
�p

Npq + 1
�q

Nqp

)
Mi;(p,q). (23)

These directors Npq and Nqp are the discrete equivalents of the normal vector n for the curve
(i, s

q
i Sq,−s

p
i Sp).

3.3. Neighboring bending moments

The node Pi is connected to its neighbors by the edges p∈ Ie(i). Let j =a
p
i be the second ver-

tex of the edge p. The edge p is one of the two members of a subset of the elbows defined on
Pj . The elements of this subset are, for q ∈ Ie(j), the elbows [j ; (p, q)] (p >q) and [j ; (q,p)]
(q >p). There are Card(Ie(j))−1 of such elbows.

Let us first consider a couple (p, q) (p>q). The force applied to the node Pi by the bend-
ing moment Mj ;(p,q) may be written as (see left part of Figure 4)

Fj ;(p,q)
i = 1

�p

Sj→i ∧Mj ;(p,q) = 1
�p

(
−s

p
j Sp

)
∧Mj ;(p,q)

=− 1
�p

s
p
j Sp ∧Bpq Mj ;(p,q) =

s
p
i

�p

Sp ∧Bpq Mj ;(p,q).

In the case (q,p) (q >p), this same force is expressed by (see right part of Figure 4)

Fj ;(q,p)
i = 1

�p

Mj ;(q,p) ∧Sj→i = 1
�p

Mj ;(q,p) ∧
(
−s

p
j Sp

)

= 1
�p

s
p
j Sp ∧Bqp Mj ;(q,p) =− s

p
i

�p

Sp ∧Bqp Mj ;(q,p).

Figure 4. Neighboring bending moments.
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In the case (q,p) (q <p), the bending moment is expressed by

Mj ;(q,p) =
(
s
q
j Sq ∧ s

p
j Sp

)
Mj ;(q,p) = s

q
j s

p
j kqp Mj ;(q,p) (24)

and, accordingly,

Fj ;(q,p)
i =− 1

�p

Sj→i ∧Mj ;(q,p) =−
s
p
j

�p

Sp ∧ s
q
j s

p
j kqp Mj ;(q,p) =−

s
q
j

�p

Sp ∧kqp Mj ;(q,p) (25)

The resultant of all forces applied on the node Pi by the bending moments acting on the
neighboring nodes of Pi may then be written down as

∑
neighb

Fneighb
i =

∑
p∈Ie(i)


 ∑

(p,q)∈IeS
(a

p
i )

s
p
i

�p

Sp ∧Bpq Ma
p
i ;(p,q) −

∑
(q,p)∈IeS

(a
p
i )

s
p
i

�p

Sp ∧Bqp Ma
p
i ;(q,p)




=
∑

p∈Ie(i)

s
p
i

�p

Sp ∧


 ∑

(p,q)∈IeS
(a

p
i )

Bpq Ma
p
i ;(p,q) −

∑
(q,p)∈IeS

(a
p
i )

Bqp Ma
p
i ;(q,p)


 .

4. Dynamical equations

4.1. Positions and velocities

The position Xi and the velocity Vi of the node Pi are related by the obvious differential
equation

Ẋi =Vi . (26)

Collecting all the forces acting on a node Pi , then Euler’s first law of linear momentum results
in

mi V̇i =−
∑

p∈Ie(i)

s
p
i Tp Sp +

∑
(p,q)∈IeS

(i)

(
1
�p

Npq + 1
�q

Nqp

)
Mi;(p,q)

+
∑

p∈Ie(i)

s
p
i

�p

Sp ∧


 ∑

(p,q)∈IeS
(a

p
i )

Bpq Ma
p
i ;(p,q) −

∑
(q,p)∈IeS

(a
p
i )

Bqp Ma
p
i ;(q,p)


+Fe

i . (27)

A node may be subjected to obey a rheonomic constraint. In this situation, the differential
equations concerning that node have to be replaced by

Xi (t)=X0
i (t), Vi (t)= Ẋ0

i (t), (X0
i (t) given). (28)

4.2. Tensions

Let us consider an edge p. In its unstretched state, the value of the tension in this edge is
Tp =0 and the edge length is �0

p. In a stretched state, a force Tp Sp is acting along the edge,
and the length of the edge takes the value �p. Considering the edge as a spring of stiffness
Kp, one may write

�p −�0
p

�0
p

= 1
Kp �0

p

Tp. (29)
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Figure 5. Kinematic of the angle between two edges.

Deriving with regard to time the two sides of this expression, we arrive at Ṫp =Kp �̇p. Using
(10), we obtain the differential equations governing the tensions:

Ṫp =Kp Vp·Sp. (30)

4.3. Bending moments

Let [i; (p, q)] be an elbow. In its unstretched state, the angle made by the two edges takes the
value θ0

pq and the bending moment acting on this elbow is equal to zero. The displacements
of the nodes and edges of the network will modify the angle made by p and q to a value
θpq(t), and a restoring bending moment Mi;(p,q) will then appear, given by

Mi;(p,q) =−Ji;(p,q)

(
θpq(t)− θ0

pq

)
, (31)

(Mi;(p,q) >0 when θpq <θ0
pq ). Let us derive the two sides of this relation with respect to time:

Ṁi;(p,q) =−Ji;(p,q) θ̇pq .

We now evaluate the quantity θ̇pq according to the local kinematics of the two edges
p and q.

Let us first consider a local frame with Pi as origin, −s
p
i Sp as first basis vector 
ı and

the plane (
ı, 
) containing the vector Sq . Let us choose the orientation of 
 so that the triad
[−s

p
i Sp,−s

q
i Sq, 
k =
ı ∧ 
 ] be right-handed:


k =
(−s

p
i Sp

)∧ (−s
q
i Sq

)
‖ (−s

p
i Sp

)∧ (−s
q
i Sq

)‖ = s
p
i s

q
i

Sp ∧Sq

‖Sp ∧Sq‖ =Bpq. (32)

The value of θpq is directly related to the position of the point S defined by the intersec-
tion of the edge q with the unit circle centered on Pi (refer to Figure 5). Let (x(t), y(t) be
the coordinates of S. We may write

x = cos θpq y = sin θpq ẋ =− sin θpq θ̇pq ẏ = cos θpq θ̇pq,

so that

ẏ x −y ẋ = cos2 θpq θ̇pq + sin2 θpq θ̇pq = θ̇pq .

This last expression may be written vectorially as:

S=
∣∣∣∣∣∣
x

y

0
Ṡ=

∣∣∣∣∣∣
ẋ

ẏ

0
θ̇pq = (S∧ Ṡ

)
z
= (S∧ Ṡ

) ·
k. (33)
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Let us remark now that S=−s
q
i Sq , which results in

θ̇pq = (−s
q
i Sq ∧−s

q
i Ṡq

) ·Bpq, (34)

so that, from (9),

θ̇pq =
(

Sq ∧ 1
�q

SqqVq

)
·Bpq. (35)

It is now possible to generalize the preceeding result to any elbow [i; (p, q)] of the net-
work G. In the plane (Pi;−s

p
i Sp;−s

q
i Sq), we can define an orthogonal right-handed frame

with Pi as origin, such that the basis vector 
k and the vector Bpq are oriented in the same
way. In the (
ı, 
) plane, the angle at which the two edges p and q meet at the node Pi has
for value θpq = θq − θp. Then, from the preceeding relation,

θ̇pq = θ̇q − θ̇p =
[(

Sq ∧ 1
�q

SqqVq

)
−
(

Sp ∧ 1
�p

SppVp

)]
·Bpq. (36)

Hence, in this local frame:

Ṁi;(p,q) =Ji;(p,q)

[
1
�q

(
Sqq Vq ∧Sq

)− 1
�p

(
Spp Vp ∧Sp

)] ·Bpq. (37)

Let us permute the triple product:

SqqVq ∧Sq ·Bpq =Sq ∧Bpq ·SqqVq .

The vector Sq ∧Bpq is a unit vector, so that we may use the relation (12):

SqqVq · (Sq ∧Bpq

)=Sqq
(
Sq ∧Bpq

) ·Vq (38)

and finally, by using (13), transform this last expression into

SqqVq ∧Sq ·Bpq =Sq ∧Bpq ·Vq . (39)

In the same way, we may write

SppVp ∧Sp ·Bpq =Sp ∧Bpq ·Vp. (40)

Making use of the secondary directors introduced by (21), the differential equation gov-
erning the time evolution of the bending moments finally takes the form

Ṁi;(p,q) =−Ji;(p,q)

[
s
p
i

�p

Npq ·Vp + s
q
i

�q

Nqp ·Vq

]
. (41)
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4.4. Differential system

Collecting the preceeding results, we may write the first-order differential system governing
the motion of a mechanical network as:

Ẋi =Vi , (42)

mi V̇i =−
∑

p∈Ie(i)

s
p
i Tp Sp +

∑
(p,q)∈IeS

(i)

(
1
�p

Npq + 1
�q

Nqp

)
Mi;(p,q) (43)

+
∑

p∈Ie(i)

s
p
i

�p

Sp ∧


 ∑

(p,q)∈IeS
(a

p
i )

Bpq Ma
p
i ;(p,q) −

∑
(q,p)∈IeS

(a
p
i )

Bqp Ma
p
i ;(q,p)


+Fe

i

Ṫp =Kp Vp ·Sp, (44)

Ṁi;(p,q) =−Ji;(p,q)

[
s
p
i

�p

Npq ·Vp + s
q
i

�q

Nqp ·Vq

]
. (45)

The lengths �p, the primary directors Sp and the secondary directors (Bpq ; Npq) are
obtained from the positions Xi by the relations

�p =‖XE(p) −XB(p)‖, (46)

Sp = XE(p) −XB(p)

�p

, (47)

Bpq = s
p
i s

q
i

Sp ∧Sq

‖Sp ∧Sq‖ , (48)

Npq = s
p
i Sp ∧Bpq. (49)

On each node Pi , the triads (−s
p
i Sp,Npq,Bpq) and (−s

q
i Sq,Nqp,Bpq) form a set

of orthonormal directors. The initial state of the network must be given by the values
(X0

i ,V0
i , T

0
p ,M0

i;(p,q)) for a time t = t0.
As a particular case, one may consider the standard model for a truss in which the

beams can only sustain axial forces. Then, all the moments vanish and the differential sys-
tem describing the motion of this truss can be written in a much simpler form:

mi Ẍi =−
∑

p∈Ie(i)

s
p
i Tp Sp +Fe

i Ṫp =Kp Ẋp ·Sp. (50)

The equilibrium state for this truss will be found by solving the system of equations given by

−
∑

p∈Ie(i)

s
p
i Kp (�p −�0

p)Sp +Fe
i =0. (51)

Such equations are well known and could have been derived directly in a simpler way through
the Lagrange function associated with the network.

5. A numerical example

An example of a mechanical network which evolves according to the differential laws (42–45)
will now be presented. This example is taken from Shi et al. [5] who describe a benchmark
for testing dynamic analysis packages that deals with flexible bodies. A beam is built into a
flexible shaft that is driven with an angular displacement θ(t) around the z-axis. Assuming
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Figure 6. Initial (a) and moving (b) network. Driving nodes on (c).

zero gravity, one has to compute the beam’s tip deformation in its body frame (X,Y ). This
beam is modeled by a network of 77 nodes and 296 edges represented in Figure 6. The first
eight nodes are constrained to rotate around the z-axis with the same angular displacement
θ(t) given by

θ(t)=




ωs

Ts

[
t2

2 +
(

Ts

2 π

)2 (
cos

(
2 π t
Ts

)
−1

)]
t <Ts

ωs

(
Ts

2

)
t ≥Ts

(52)

with ωs =6·0 rad/s and Ts =15 s. These eight nodes behave collectively as a rigid box clamped
to a rotating z-axis driving the flexible part of the network. This network has a total length
L=10 m and a square cross-section b=0·1 m (in Figure 6, the cross-sections have been over-
sized by a factor of five).

A numerical value must be assigned to each of the physical constants mi , Kp and Ji;(p,q).
By now, no general method is known which will ensure a network motion reproducing the
deformation of a corresponding three-dimensional continuum media. In that example, prelim-
inary results pertaining to one-dimensional networks will be used. We consider each edge p

to be a local beam for which the area of the cross-section is Ap and the area’s moment of
inertia is Ip. This local beam is assumed to be made of a material with an elasticity modulus
Ep and a volumic mass ρp. Then, the mass mi , the edge stifness Kp and the elbow stiffness
Ji;(p,q) are computed by the following relations

mi = 1
2

∑
p∈Ie(i)

ρp Ap �0
p, Kp = Ep Ap

�0
p

, Ji;(p,q) = Ep Ip +Eq Iq

�0
p +�0

q

.

The material properties will be taken from [5]: E = 7·0 × 1010 Pa, I = 2·0 × 10−7 m2, A =
4·0 × 10−4 m2, total mass M = 12 kg. The beam has been discretized by eighteen boxes made
of twelve lateral edges linked by four transversal edges. For all edges, square cross-sections of
area A/12 have been assumed. Then, the physical constants in this network are

0·106≤mi ≤0·160 4·1×106 ≤Kp ≤2·5×107 2·3×103 ≤Ji;(p,q) ≤8·5×103

In this example, the differential system (42–45) is large (77 nodes, 296 edges and
2010 elbows resulting in 2383 differential relations) and stiff. Explicit numerical methods
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Figure 7. Tip deflection of the motion-driven beam.

would have to use a very small time step to ensure stability of the scheme. In order to over-
come this problem, we turned to the use of semi-implicit numerical derivatives which will be
described precisely elsewhere. Briefly said, these derivatives are obtained in three steps. First,
an explicit step gives the differentials δXi of the positions. Then, the new positions are used
to set up a linear system from which are obtained implicitly the differentials of the tensions
δKp and the differentials of the bending moments δJi;(p,q). The third step computes the veloc-
ity differentials δVi from the relation (43). Semi-implicit numerical schemes of arbitrary order
may be obtained simply by using semi-implicit derivatives in place of ordinary derivatives in
the usual Runge-Kutta schemes. We have used for the computations a semi-implicit Runge-
Kutta scheme of order 4, and a time step τ =1×10−3 (s).

The time evolution of the tip deflection Y (t)=− sin θ(t) xnn(t)+cos θ(t) ynn(t) is plotted on
the Figure 7 (the node nn is at the tip of the beam). The largest deflection Ymax =−0·568 is
obtained for t =6·46, in close agreement with t ≈6·5, Ymax =−0·573 as given by [5]. One may
notice, however, a slightly larger delay for the first deflections to appear and a lower time of
recovery in the phase of decreasing angular acceleration. This lack of stiffness could be over-
come by adjusting the flexural stiffness coefficients Ji or by adding internal edges in order to
stiffen the elementary boxes.

6. Conclusion

The differential equations governing the motion of three-dimensional mechanical networks
have been obtained. The mechanical components of the state vector include not only the ten-
sions that belong to the edges but also the bending moments defined at the junction of two
edges. With this added feature, these networks may then be used to model the elastic behavior
of a deformable continuum. It is shown that the time evolution of the state vector is governed
by a set of triads of mutually orthogonal directors depending on the spatial orientation of the
edges of these networks. A planar rotating beam has been used as a numerical example. The
stiffness coefficients have been computed on the assumption that each edge should react as an
elementary beam and the results show good agreement with those reported in [5]. However,
at the time of this writing, no proof of convergence is available in support of this assumption.

This work may be related also to the field of multibody dynamics [6] from which the
numerical example was taken. The equations of motion for networks of rigid bodies were con-
sidered in the work of Wittenburg [7]. The differential system (42–45) may be used to model
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the dynamics of a system of rigid, elastic and flexible bodies connected together by various
types of joints. A rigid body has to be approximated by a system of rigidly connected mass-
points, with consideration given to the total mass and to the inertia tensor of this correspond-
ing subnetwork. Elastic bodies (such as beams) are approximated by “elastic” subnetworks
(i.e., involving tensions and bending moments). Flexible structures (strings or draperies) are
approximated by subparts for which the flexural rigidities are taken to be zero. In the future,
it is desirable to apply the framework described in this work to these various situations.
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